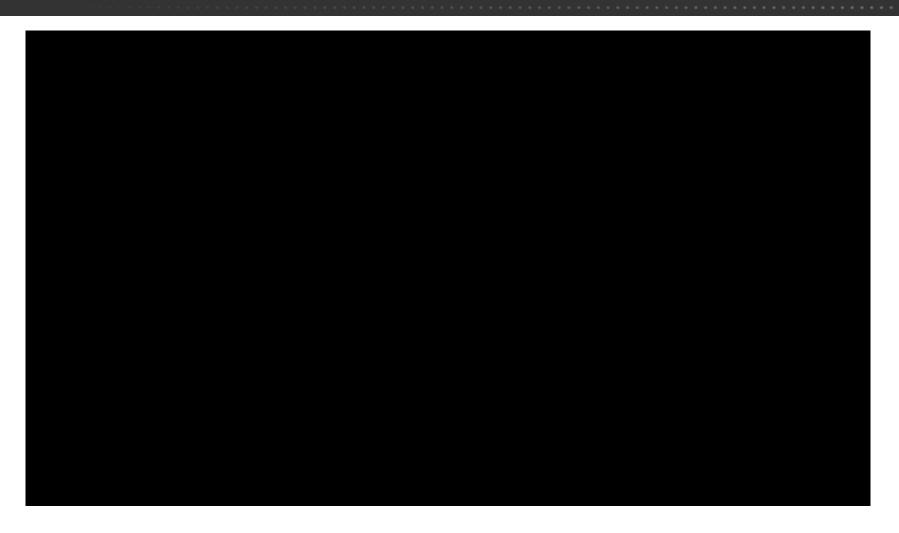
> Storage Decisions CHICAGO JUNE 11-12, 2013

13th YEAR

Solid State Technology – What's New?

Dennis Martin, President, Demartek


www.storagedecisions.com

Storage Decisions Conference | © TechTarget

Agenda: Solid State Technology – What's New?

- Demartek About Us
- Solid-state storage overview
- Types of NAND flash (SLC, MLC, TLC)
- NAND flash endurance and performance
- SSD Capacity devices and storage systems
- SSD Caching
- Sharing of SSD technology
- Future non-volatile memory technologies
- References

About Demartek Video

Demartek About Us video - http://www.youtube.com/demartek

Storage Decisions Conference | © TechTarget

Solid State Technology Overview

- Presents memory technology, such as DRAM or NAND flash, as storage media and appears as a disk drive to the operating system in most cases
 - Some motherboards allow dedicated SSD to act as a cache or other functions
- Very fast, no moving parts (no "seek time")
- Variety of form factors
- Prices dropping
- Some SSDs use DRAM and NAND flash together
- Capacities doubling almost yearly

NAND Flash – What is it?

- A specific type of EEPROM
 - EEPROM Electrically erasable programmable read-only memory
 - The underlying technology is a floating-gate transistor that holds a charge
- Bits are erased and programmed in blocks
 - Process is known as the program-erase (P-E) cycle
 - Flash blocks are typically 4KB, some larger
- Non-volatile
- Quiet, low-power, low-weight, low-heat
- Types SLC, MLC, TLC

Types of NAND Flash

- Single-level Cell (SLC) 1 bit per cell
- Multi-level Cell (MLC) 2 bits per cell
 - Consumer grade (cMLC)
 - Enterprise/Endurance grade (eMLC)
- Triple-level Cell (TLC or MLC-3) 3 bits per cell

	SLC	MLC	TLC (MLC-3)
Bits per cell	1	2	3
Performance	Fastest	\longleftrightarrow	Slowest
Endurance	Longest	\longleftrightarrow	Shortest
Capacity	Smallest	\longleftrightarrow	Largest
Error Prob.	Lowest	\longleftrightarrow	Highest
Price per GB	Highest	\longleftrightarrow	Lowest
Applications	Enterprise	Enterprise / Consumer	Consumer

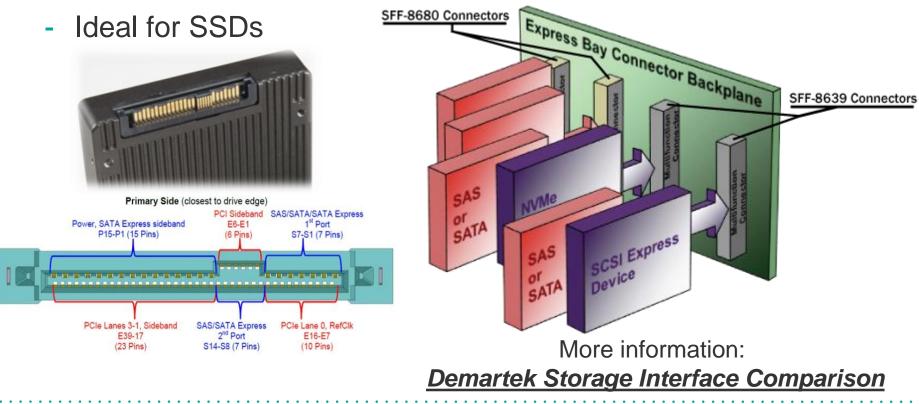
NAND Flash – Endurance

- Single-level cell (SLC)
 - SLC typical life of 100,000 write cycles
- Multi-level cell (MLC)
 - MLC typical life 10,000 or fewer write cycles
 - MLC-2: 3,000 10,000 write cycles
 - MLC-3: 300 3,000 write cycles
 - "Enterprise MLC" (eMLC): 20,000 30,000 write cycles
 - Based on MLC-2
 - Better name is probably "Endurance MLC"
- As die size decreases, endurance also decreases
 - This may be fine for consumer, but not enterprise applications

NAND Flash Performance

• IOPS

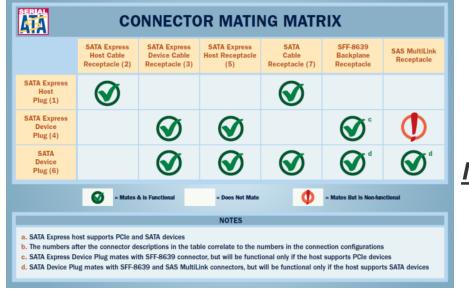
- 10K 250K reads per device
 - Enterprise HDDs 100-200 IOPS
 - Desktop HDDs < 100 IOPS</p>
- Writes are generally slower than reads
- Bandwidth
 - Up to 550 MB/s for 6 Gb/s SAS or SATA interface drives
 - Up to 1 GB/s for SAS wide-port drives
 - Up to 3.2 GB/s for PCIe cards
- Latencies
 - <1 ms for drives, depending on interface
 - Well below 1 ms for PCIe cards


NAND Flash Maximum Capacities Today

- Individual Devices
 - Drive form factor 2 TB, 2.5-inch, 6 Gb/s SAS
 - Compare to capacities of 10K & 15K RPM HDDs
 - PCIe card 10 TB
 - mSATA (mini PCIe) 256 GB
 - SATADIMM stick 480 GB
- Storage Arrays
 - All-flash, single-rack 1 PB

SSD Form Factor – SCSI Express

• SCSI Express (2.5-inch PCIe)


- Combines proven SCSI protocol with performance of PCIe bus
- Products expected in 2014

SSD Form Factor – SATA Express

SATA Express

- SATA compatibility transported by the PCIe bus
- Speeds will be 8 Gb/s and 16 Gb/s
- Specification in member review as of January 2013
- Products expected in 2014

View larger version of this chart on the <u>Demartek Storage</u> <u>Interface Comparison</u> web page

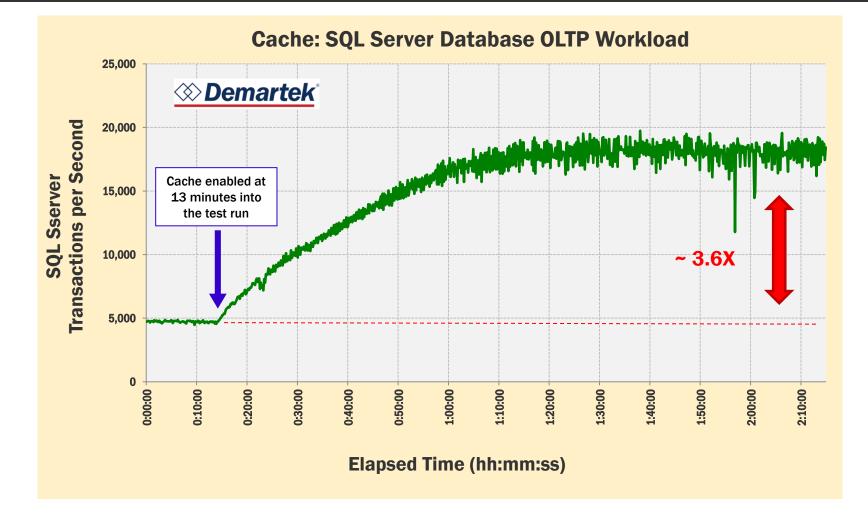
NVM-Express (NVMe)

- Scalable host controller interface designed for enterprise and client SSDs
 - Targeted at "high-frequency" storage applications
 - Goal is to streamline access to SSD devices that are directly connected to the PCIe bus, including the storage stack in the O.S.
 - Compatible with SCSI/SAS, but uses an underlying command set of six I/O commands for efficiency
- Enterprise samples expected in 2013, G.A. in 2014
- More information:
 - http://www.demartek.com/Demartek_Comments_IDF2012_and_NVMe.html
 - http://www.nvmexpress.org/

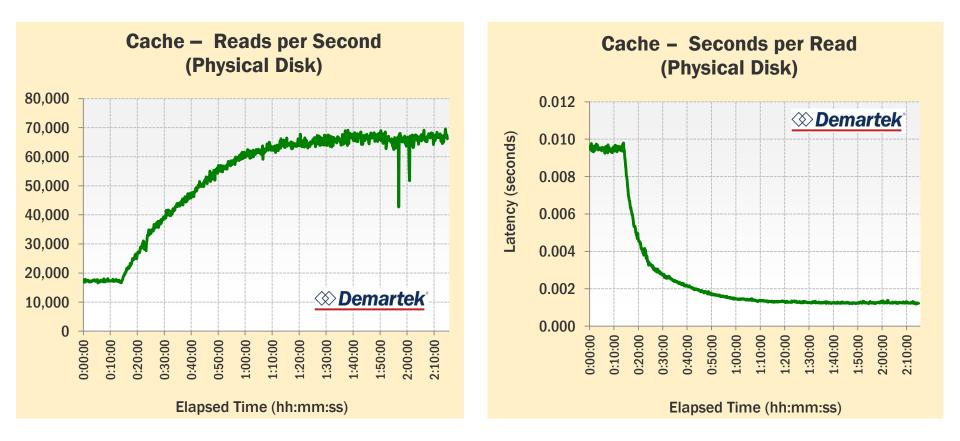
SSD Caching Basics

- Caching controller identifies any frequently accessed data ("hot data") and automatically moves *a copy* of the hot data to SSD media
- SSD impact
 - Multiple applications can benefit from the SSD cache simultaneously
 - Performance improves over time, as cache is populated with data
 - This is known as "cache warm-up" or "cache ramp-up"
- Some caching solutions cache only the reads, others cache both reads and writes
- Overall HDD I/O load is reduced Fewer I/Os

SSD Caching Architecture


- SSD caching can be added:
 - Server-side
 - In the network
 - In the storage system
- We have seen increased performance benefits by combining server-side with the others

SSD Caching Workloads


- Caching Algorithms
 - Prefer random I/O, small to moderate block sizes
- Cache Friendly Workloads
 - Hot spots with repeated access
 - OLTP databases
 - Database indexes
 - File system table of contents (MFT, inodes, etc.)
- Cache Un-friendly Workloads
 - Data that is accessed approximately evenly and is larger than the cache

SSD Caching Performance – Effect on Application

Source: http://www.demartek.com/Demartek_EMC_VFCache_Evaluation_2012-02.html

SSD Caching Performance – Effect on HDDs

Source: http://www.demartek.com/Demartek_EMC_VFCache_Evaluation_2012-02.html

Future Non-Volatile Memory Technologies

- Today
 - NVDIMM (DDR3) available today, same speed and capacities as DRAM, but more expensive
- Futures near term
 - Phase Change Memory (PCM or PRAM) probably closest to commercial viability, some shipping now
- Futures moderate to long term
 - Ferroelectric (FeRAM)
 - Magnetic RAM (MRAM) includes "Racetrack" & "Spin-Torque"
 - Resistive RAM (RRAM) includes "Memristors"
 - Conductive Metal Oxide (CMOx)
 - Solid Electrolyte

Future NV Memory Technologies Commentary

- The technologies listed on the previous page are interesting from a science and physics perspective. However, the key to their commercial viability hinges heavily on the cost to produce large quantities.
- The largest quantities of NAND flash today are produced for the consumer market, such as cell phones and tablet computers. The enterprise market for SSDs generally has a somewhat lower priority from the high-volume producers, simply because the volumes are not as large for enterprise products compared to consumer products.
- The next thing (PCM, possibly) will only become commercially viable if the manufacturers can get significantly better costs than NAND flash for equivalent features and capacities.

Demartek References

- Demartek SSD Zone
 - www.demartek.com/SSD
- Demartek SSD Deployment Guide
 - www.demartek.com/Demartek_SSD_Deployment_Guide.html
- Demartek Commentary Horses, Buggies & SSDs
 - <u>www.demartek.com/Demartek_Horses_Buggies_SSDs_Commentary.html</u>
- Demartek Free Monthly Newsletter
 - www.demartek.com/Newsletter

Thank You!

Dennis Martin, President <u>dennis@demartek.com</u> <u>www.linkedin.com/in/dennismartin</u>

(303) 940-7575 <u>www.demartek.com</u> <u>http://twitter.com/Demartek</u> <u>www.youtube.com/Demartek</u> Skype: Demartek

To learn more about Demartek:

- Download the Aurasma App (Android/iPhone)
- Search and follow "Demartek"
- View image below with viewfinder.

*also on the back of Dennis' business card

