

Driving Innovation Through the Information Infrastructure

SPRING 2011

Deep Dive on Solid State Storage

The Technologies & Architectures

Dennis Martin President Demartek

Demartek Company Overview

- Industry analysis with on-site test lab
- Lab includes servers, networking and storage infrastructure
 - Fibre Channel: 4 & 8 Gbps
 - Ethernet: 1 & 10 Gbps (with FCoE)
 - Servers: 8+ cores, very large RAM
 - Virtualization: ESX, Hyper-V, Xen
- We prefer to run real-world applications to test servers and storage solutions
 - Currently testing various SSD and FCoE technologies
 - We create our own data sets for application workloads
- Web: <u>www.demartek.com</u>

Solid-State Storage Overview

- Uses memory technology as the storage media and appears as a disk drive to the O.S.
- Very fast, no moving parts
- Variety of form factors
- Prices dropping
- Some SSDs use DRAM and NAND-Flash together
- Capacities doubling almost yearly

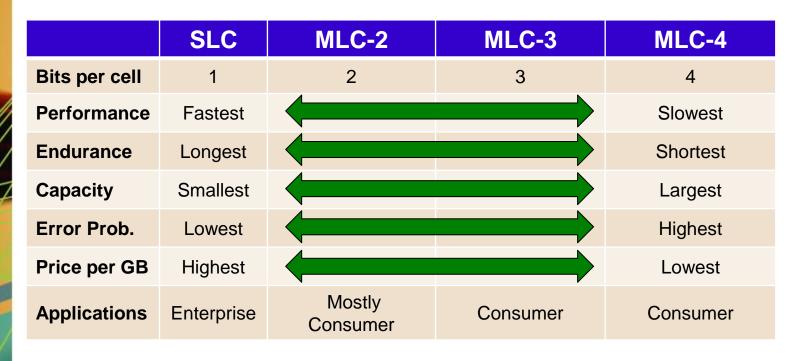
Acronyms & Buzzwords

- SSD: Solid-State Drive (or Disk)
- SSS: Solid-State Storage
- SLC: Single-Level Cell
- MLC: Multi-Level Cell
- P-E Cycle: Program-Erase Cycle
- EFD: Enterprise Flash Drive
- SCM: Storage Class Memory

NAND-Flash SSD

IOPS

- 10K 250K reads per device
 - Enterprise HDD: 100-200 IOPS
 - Desktop HDD: < 100 IOPS
- Writes are generally slower than reads
- Capacities
 - Individual devices
 - Drive form factor: up to 1TB
 - PCIe card: up to 1.2TB
 - Arrays: Up to 250TB ("all-SSD" arrays)


NAND-Flash: What Is It?

- A specific type of EEPROM
 - EPROM: Electrically Erasable
 Programmable Read-Only Memory
 - The underlying technology is a floating-gate transistor that holds a charge
- Bits are erased and programmed in blocks
 - Process is known as the Program-Erase (P-E) cycle
 - Flash blocks are typically 4KB, some larger

NAND Flash Technologies

- Single-Level Cell (SLC) One bit per cell
- Multi-Level Cell (MLC) Two or more bits per cell
 Triple Level Cell (TLC) Three bits per cell

The first announcements of MLC-3 and MLC-4 were made in 2009.

NAND Flash: Endurance & Price

- Endurance
 - SLC typically 10-20 times better than MLC-2
 - SLC typical life of 100,000 write cycles
 - Newer "enterprise SLC" may have 3x write cycles
 - MLC-2 is much better than MLC-3 or MLC-4
 - MLC typical life 10,000 or fewer cycles
 - Newer "enterprise MLC" may have 3x write cycles

Price

SLC typically greater than 2x the price of MLC-2 for the same capacity

NAND Flash: General Trends

- Process sizes are shrinking
 - History: 90, 72, 50 nm
 - 2009: 34, 32 nm
 - 2010-2011: mid-20's nm
- Page sizes, block sizes, and Error Correction Code (ECC) requirements are increasing

NAND Flash: General Trends

- Data retention, endurance, and performance are decreasing as bits per cell increase
 - For consumer applications, endurance becomes less important as density and capacity increase
- Power consumption increases somewhat as bits per cell increase beyond 2 bits per cell
- Newer NAND flash controllers bring some SLC features to MLC flash

Power and Cooling

Device type	RPM	Form factor	Interface	Watts Typical	Watts Idle
Spinning disk	15K	3.5″	FC/SAS	13 - 19	8 - 14
Spinning disk	15K	2.5″	SAS	8 - 14	5 – 7
Spinning disk	10K	3.5″	FC/SCSI	11 - 18	6 - 13
Spinning disk	10K	2.5″	SAS	8 - 14	3 – 6
Spinning disk	7.2K	3.5″	SAS/SATA	7 - 13	3 – 9
Spinning disk	7.2K/5.4K	2.5″	SATA	1 - 4	0.7 - 1
SSD: SLC- flash	-	*	SAS/SATA	1 - 8	0.05 – 4
SSD: MLC- flash	-	*	SAS/SATA	0.1 – 2	0.05 - 0.5

Typically in datacenters, every watt of power consumed by computing equipment requires another watt of power to cool it.

* SSDs are available in 3.5", 2.5" and 1.8" HDD form factors and other form factors

Flash in Enterprise Products

- Disk array vendors
 - Primary storage: SSDs in standard HDD slots
 - Cache: SSD technology used as cache
- Appliance vendors "Accelerators"
- Server vendors
 - Add flash on a PCI-Express bus card
 - Add flash directly onto the motherboard
 - Blade server mezzanine cards
- Is enterprise flash storage or memory?

Vendor Product Trends

- Automated data movement
 - Applies to primary storage
 - Moves hot data to SSD tier
 - Scheduled by minutes, hours, days, etc.
 - LUN level and beginning to see sub-LUN level automated data movement
- SSDs together in cache and primary storage
- External disk array controllers and internal RAID adapters are adapting to SSD speeds

O.S. Behavior with Flash

- Operating systems need to behave differently with flash SSDs
 - Trim notify the underlying device regarding data that is no longer needed
 - Trim is currently available for SATA interfaces only. The SAS committee has added UNMAP to the SAS/SCSI spec.
 - Windows 7 and Windows Server 2008 R2
 - Defragmenting is off by default for flash SSDs
 - RHEL 6 with EXT4 only, but Trim is not enabled by default
- Utilities (Intel RapidStorage 9.6+, etc.)

SSD: Cache

- Caching controller identifies any frequently accessed data ("hot data")
- Caching controller automatically moves hot data to SSD media
- Multiple applications can benefit from the SSD cache simultaneously
- Performance improves over time, as cache is populated with data
- Overall HDD I/O load is reduced: fewer I/Os

SSD: Primary Storage

- User decides what data to place on SSD
- User decides when to place data on SSD
- User moves specific data to SSD
- SSD benefits only the applications that use the data placed on the SSD
- Performance improves instantly
- Automation software can help select and move data to SSD

SSD Performance Test: Web Server Workload

- Must maintain consistent response times
- Must handle sudden increases in traffic
- Must be cost-effective

Web Server Response Time

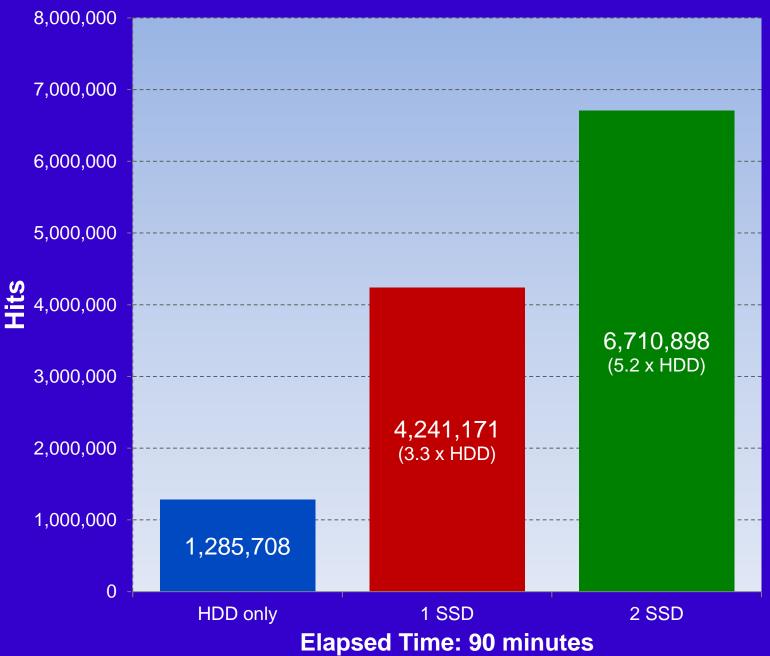
- Jakob Nielsen's Alertbox, June 21, 2010 <u>http://www.useit.com/alertbox/response-</u> <u>times.html</u>
- Response-Time Limits
 - 0.1 seconds: gives the feeling of instantaneous response
 - 1 second: user's flow of thought is seamless
 - 1-10 seconds: users feel at the mercy of the computer and wish it was faster
 - 10+ seconds: users start thinking about other things

Web Server Setup

- Windows Server 2008 R2 with IIS 7.5
 - Default data compression disabled
 - 8dot3 short names removed and disabled
- 40GB of web server content
- 1.48 million files
 - 80000 HTML text pages
 - 1.4 million graphic images (JPEG and PNG)
- Represents a web hosting server with many sites and many pages

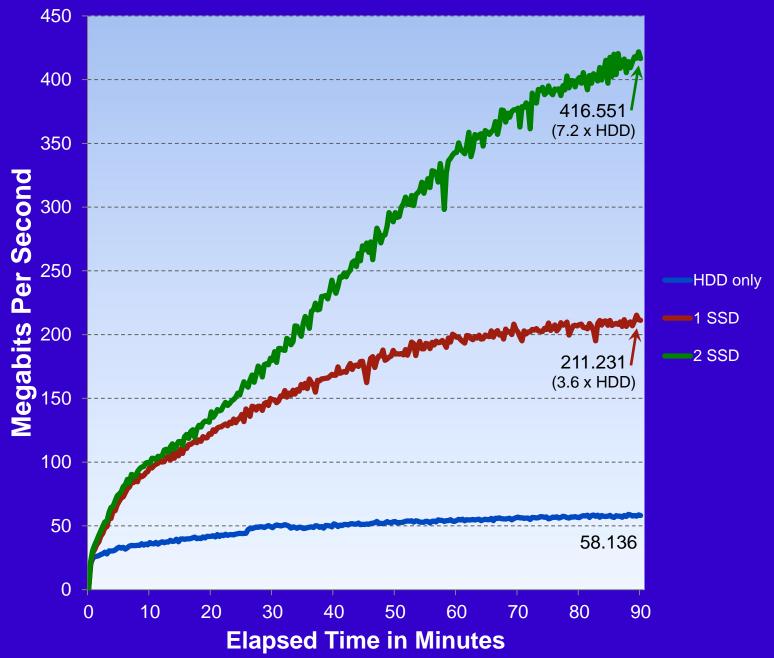
Two Sets of Tests

- Comparing small configuration of desktopclass 7200 RPM SATA interface disk drives to SLC SSDs in caching configuration
- 2. Comparing large configuration of enterprise-class 15K RPM SAS interface disk drives to PCIe SSD accelerator card in primary storage configuration
- Each test ran for 90 minutes

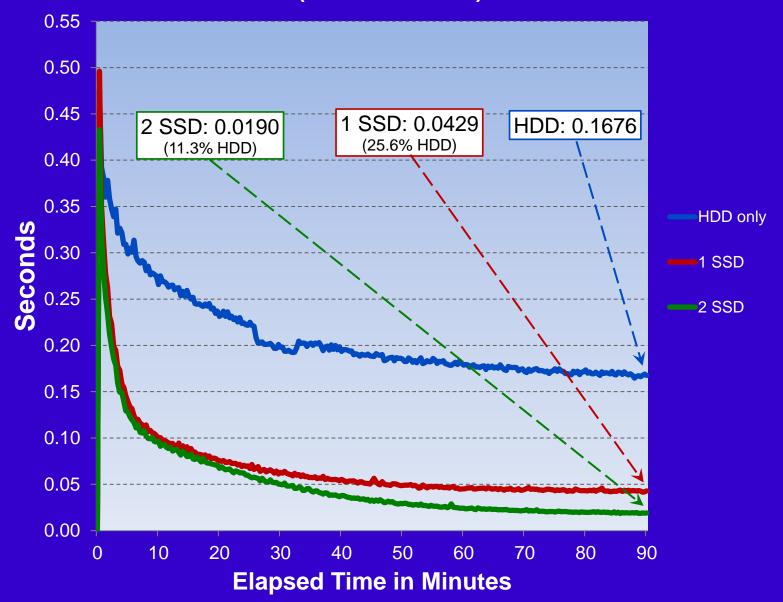


Test 1 – Caching O.S. and Web content

- Configuration 1
 - 6 disk drives: 500GB SATA, 7200 RPM,3.5-inch, RAID10
- Configuration 2
 - 6 disk drives: 500GB SATA, 7200 RPM,3.5-inch, RAID10
 - 2 SSDs (cache): 32GB, SLC, 2.5-inch, SATA interface
- Network: 1GbE
 - Teamed NICs

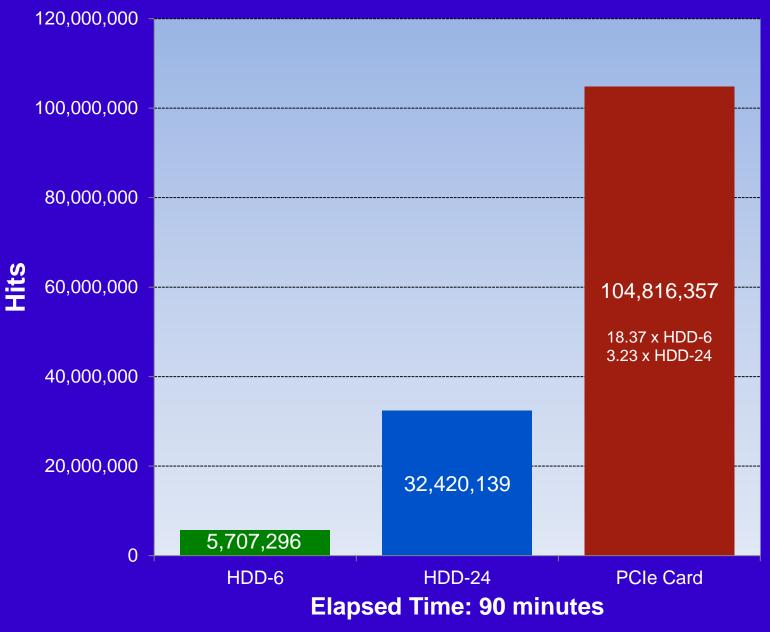


Total Hits – Caching Configuration



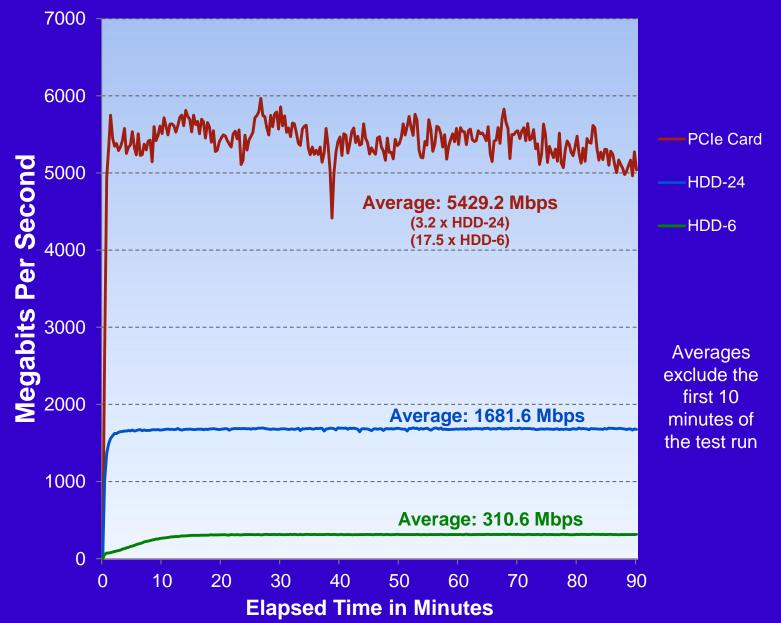
Throughput – Caching Configuration

Average Page Response Time Caching Configuration (Lower is better)

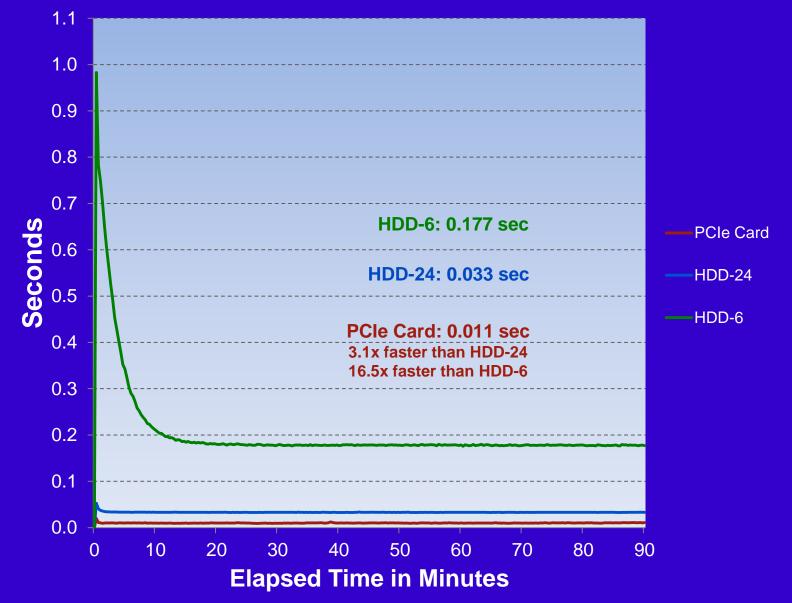


Test 2 – Primary Storage Web content only

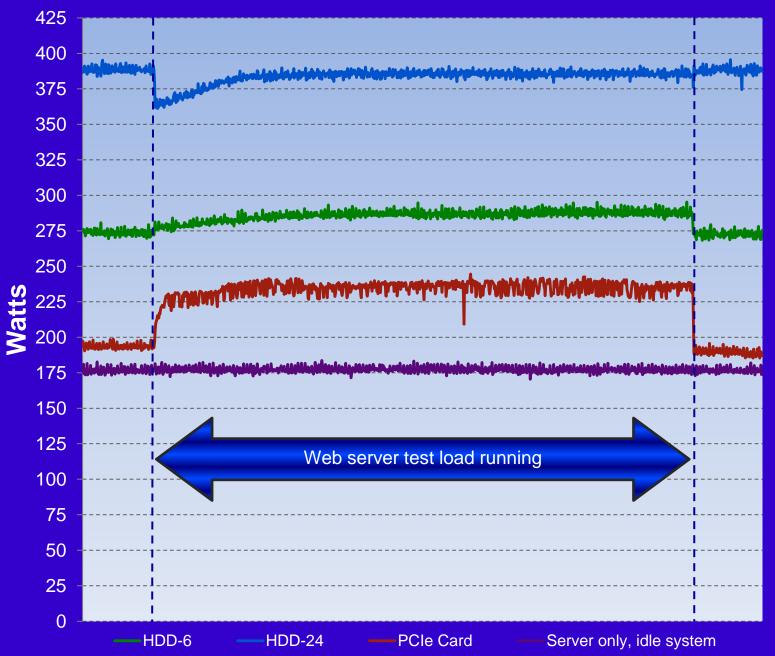
- Configuration 1
 - 6 disk drives: 73GB 6Gbps SAS, 15K RPM,
 2.5-inch, RAID10
- Configuration 2
 - 24 disk drives: 73GB 6Gbps SAS, 15K RPM,
 2.5-inch, RAID 10
- Configuration 3
 - 1 PCIe SSD: 300GB SLC Flash
- Network: 10GbE
 - SSDs and 10GbE go well together



Total Hits – Primary Storage Configuration



Throughput – Primary Storage Configuration



Average Page Response Time Primary Storage Configuration (Lower is better)

Web Server Power Consumption

Performance Comments

- SSD technology can move the bottleneck to unexpected places
 - The 1GbE network was the bottleneck during the initial PCIe card test, requiring us to go to the 10GbE network to get the full performance of the PCIe card
- SSD technology can drive up CPU utilization
 - Considerably more work can get done with SSD technology, which can significantly increase CPU utilization

Future

- Emerging technologies, especially in the flash controllers, will enable MLC flash to become suitable for the enterprise
- <u>Opinion</u>: I believe that at the current rate of price decreases and capacity increases, SSDs (probably flash) will become the new standard for tier-1 storage by 2012.

Ongoing Research

- Other types of memory technology that may become good candidates for storage devices (within 3-5 years)
 - PCM: Phase Change Memory (PC-RAM)
 - Solid Electrolyte
 - MRAM: Magnetic RAM (Racetrack)
 - FeRAM: Ferroelectric RAM
 - RRAM: Resistive RAM (Memristor)

Demartek SSD Resources

- Demartek SSD Zone
 - <u>http://www.demartek.com/SSD.html</u>
- Look for my article *Making the Case for* Solid-State Storage in June online edition of Storage Magazine
 - <u>http://searchstorage.techtarget.com</u>
- Demartek Storage Interface Comparison
 - <u>http://www.demartek.com/Demartek_Interfa</u>
 <u>ce_Comparison.html</u>
 - Or search for "storage interface comparison"

Free Monthly Newsletter

 Demartek publishes a free monthly newsletter highlighting recent reports, articles and commentary. Look for the newsletter sign-up at <u>www.demartek.com</u>.

Contact Information

(303) 940-7575 <u>www.demartek.com</u> <u>http://twitter.com/Demartek</u> YouTube: <u>www.youtube.com/Demartek</u> Skype: Demartek

Dennis Martin, President <u>dennis@demartek.com</u> <u>www.linkedin.com/in/dennismartin</u>